
On the “Attractive Component” to the Free Energy of Interaction
between Macroions of Like Charge

The purpose of this Commentary is to clarify some of
the recent issues associated with theoretical investiga-
tions on macroionic solutions and colloidal suspensions.
The DLVO (Derjaguin-Landau-Verwey-Overbeek) pair-
wise interaction energy1,2 is generally used to interpret
the physical properties of these charged systems. The
DLVO energy is composed of two parts: a short-range
van der Waals attraction term and a long-range Cou-
lombic repulsion term. The van der Waals term is
significant only when the particles are near contact and
is therefore not relevant for the present communication.
The DLVO repulsive term between two polyions, denoted
by pp and separated by a distance r, is of the form of a
screened Debye-Hückel interaction,

where Zp is the magnitude with sign of the polyion
charge, qe is the magnitude of the electron charge, ε is
the bulk dielectric constant, app is the distance of closest
approach (sum of the radii) between two polyions, and
κDH is the Debye-Hückel screening parameter, where the
subscript DH indicates that it is a function of only the
added salt,

where 〈nj〉 is the concentration (particles/cm3) of the jth
added ion and λB ) qe2/εkT is the Bjerrum length.
Evidence is mounting that indicates that the DLVO

theory may not describe the complete picture of these
complex macroion systems.3-14 In particular, these data
indicate the presence of an “apparent long range attrac-
tion” between macroions of like charge. There is the
direct visual evidence of Ise and co-workers,5 who report
confocal laser scanning micrographs showing coexisting
“void” and “cluster” regions in salt-free dispersions of
latex spheres, where the void region extended to a length
of 60 µm into the solvent. The cluster regions exhibit a
high degree of order as evidenced by ultrasmall-angle
X-ray scattering.4 The ordered clusters appear to have
a dynamic character.3,6 In their light-scattering study
of the liquid phase of latex spheres, Clark, Ackerson, and

Hurd6 describe the dynamics of the underlying ordered
regions as:

The scattering becomes characterized by the momen-
tary appearance and disappearance of six-spot pat-
terns reminiscent of the crystalline phase and having
the same K10. These fluctuating spot patterns appear
with random orientation and persist for a few tens
of milliseconds.

The formation of “clumps” of particles is not limited
to latex spheres. Dynamic light scattering (DLS)
methods indicate the presence of “anomalously slow”
dynamic processes that have yet to be explained. Lin,
Lee, and Schurr7 first reported a catastrophic drop (by
a factor of 20) in the apparent diffusion coefficient
(Dapp) of poly(L-lysine) over a narrow ionic strength
range as the concentration of NaBr was decreased.
The abruptness of this “ordinary-extraordinary” (o-
e) transition is reflected in their description of the
light-scattering intensity:

For example, the 1.0 mg/ml solution exhibited at θ
) 60° a 2.5-fold increase in intensity between 9.1 ×
10-4 and 1.1 × 10-3 M NaBr.

The magnitude of this decrease in the value of Dapp at
the transition point was too large to be attributed to
the coil-rod transition.7,15 The tracer diffusion, or
“self-diffusion”, coefficient (Dself) does not, however,
exhibit such extraordinary behavior. Fluorescence
photobleaching recovery experiments on poly(lysine)
indicate that Dself undergoes a gradual decrease in
value as one lowers the ionic strength through the o-e
transition region. This gradual decrease in Dself is
what one would expect for a coil expansion.8 En-
tanglement of the molecules is ruled out on the basis
of the data of Bruno and Mattice.9 In their studies,
poly(L-lysine) is labeled with fluorescein or rhodamine
B in a mixed system with copolymers of poly(L-lysine-
co-L-tryptophan) or poly(L-lysine-co-L-tyrosine). Bruno
and Mattice conclude that the interaction between the
poly(lysine) in the e-regime does not involve physical
contacts but rather occurs at separation distances of
60-100 Å. Polystyrene sulfonate is another system
in which Dapp exhibits a precipitous drop in value over
a narrow ionic strength range.10 Another unexplained
phenomenon in DLS studies is the “splitting” of
relaxation domains as a function of added salt, such
as for tRNA,11 bovine serum albumin,11 quaternized
poly(2-vinylpyridine),12 and mononucleosomal DNA.13
Since mononucleosomal DNA is modeled as a cylinder
450 Å in length, the splitting phenomenon for this
system cannot be interpreted in terms of entangle-
ments.
Let us now relate the above DLS studies to the

DLVO interaction energy. The current models16-18 for
coupled dynamics in the polyion-electrolyte ion sys-
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tem give for Dapp in the DLS experiments

where D0 is the infinite dilution value of the diffusion
coefficient (self-diffusion), Hpp(q) accounts for hydro-
dynamic interactions between the polyions, and the
static structure factor Spp(q) is given by

where q ) (4πñ0/λ0) sin(θ/2) is the scattering vector
at angle θ and incident wavelength λ0, ñ0 is the index
of refraction of the solvent, and Upp(r) is the interpar-
ticle pairwise interaction energy. If one employs eq 1
in eqs 3 and 4 then one finds that Dapp increases as
the salt concentration decreases. This behavior is
consistent with the o-regime and also the “upper
branch” of the systems that exhibit the “splitting”
phenomenon, but does not explain the anomalously
slow relaxation modes associated with these two
phenomena. Furthermore, the decrease in the value
of Dapp with a concomitant decrease in the intensity
of scattered light in going from the o-regime to the
e-regime is inconsistent with the relationship between
these quantities as given by eq 3. The point to be
made in this brief discussion is that some polyion
systems exhibit a slow mode in the Dapp profile that
cannot be explained in terms of the DLVO theory!
The DLVO repulsive potential is for macroions what

the Debye-Hückel potential is for simple salts. Early
discussions on the applications and limitations of the
Debye-Hückel potential19-23 also apply to the DLVO
potential. The Bjerrum approach20 is to form “ion
pairs” such that their respective charges are neutral-
ized and thus removed from the electrical energy.
Another approach is based on the statistical mechan-
ical validity of the Debye-Hückel potential and the
solution to the Poisson-Boltzmann equation.21-23 In
the Debye-Hückel theory the mean potential is
substituted for the potential of mean force. The error
introduced by this approximation is referred to as the
“fluctuation potential” from the principles of statistical
mechanics.21
According to Onsager,22 an interaction energy of the

form given by eq 1 is valid only for low concentrations
and small charges, where the effects of the ion
atmospheres are additive. In the derivation of the
DLVO potential,2 the macroion concentration is as-
sumed to be sufficiently low that the counterions
released by the polyion can be ignored, thus leading
to the screening parameter defined by eq 2 and
presumably satisfying the additivity requirement for
the ion atmospheres. In this regard the standard
DLVO potential is a “true” pairwise interaction po-
tential in that it is independent of the concentration

of the macroions. Although its validity is limited to
very dilute solutions of macroions and moderate to
high ionic strength solvents, the DLVO interaction
energy is nonetheless used to interpret data on solu-
tions of finite macroion concentration, and at times
salt-free solvents. Generally the results of such an
application give a much smaller value for the charge
of the macroion than expected from the titration
charge.24 These reduced values of the charge are
interpreted in terms of “charge renormalization”.25,26
In other words, the counterions that are associated
with the macroion are thermodynamically isolated
from those in the bulk solution.26 “Charge renormal-
ization” is thus the macroion analog to the Bjerrum
theory of simple salts.
The second approach is to look at the interaction

energy itself and effects that go beyond the simple
“first approximation” form of the DLVO theory. One
such attempt is that of Sogami and Ise,27 who propose
a model (hereafter referred to as the SI model) based
on the Gibbs free energy. Their Gibbs free energy,
Umn

G (rmn), has a minimum at separation distances of
several thousand angstroms of the particles m and n,
which is consistent with the experimental data sum-
marized above. The presence of this long-range
minimum has created a controversy in the literature,
however.
There is a segment of the scientific community who

are of the opinion that Overbeek28 has demonstrated
the “error” in the SI theory, which eliminates the long
range minimum in Umn

G (rmn). To summarize the ar-
gument we start with the relationship between
Umn

G (rmn) and the Helmholtz free energyUmn
A (rmn),27, 28

where κ′ includes the released counterions as well as
the added electrolyte,

and the effective charge macroion of radius am is
qm
eff ) Zjqe sinh(amκ′)/amκ′. The factor sinh(amκ′)/amκ′
results from the assumption of a uniform distribution
of surface charge on the macroion. Substitution of eq
6 into eq 5 gives the SI result,

To understand the Overbeek approach to the deriva-
tion of the correction term,28 it is essential to first
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understand the philosophy behind the DLVO theory
given by Verwey and Overbeek in terms of the Debye-
Hückel charging method.29 The system is partitioned
into two regions: “R” is that region which contains the
macroparticle and the small ions adsorbed onto its
surface such as to give a charge Zp, and “â” is the
remaining solution containing the added electrolyte
(denoted “ae”) and the “excess” ions that result from
the requirement of charge neutrality for the bulk
solution (designated as the counterions and denoted
by “c”). In the Verwey and Overbeek treatment28 the
chemical work associated with the adsorption of ions
onto the surface is offset by the electrical work in the
discharging process. Therefore one has for this ap-
proach the Helmholtz free energy change for the Zp
sites at the surface of the macroion

Verwey and Overbeek2 thus conclude that the total
free energy of the double layer is equivalent to the
work necessary to discharge all of the ions in solution,
i.e.,

In his criticism of the SI theory, Overbeek28 parti-
tions the free energy of the macroions from that of the
counterions in solution, with the justification that the
macroions are fixed in position. The “correction term”
introduced by Overbeek is the free energy contribution
of the solvent, which is easily obtained from the
following relationships:

Clearly the inclusion of eq 11 into eq 5 eliminates the
term responsible for the second term in the square
brackets in eq 8 and results in the relationship

where the subscript “i” denotes all of the free ions in
solution.
As reviewed above, it is also quite clear that the

Verwey-Overbeek description of the discharging pro-
cess also omitted the contribution of the solvent.
Smalley30 had pointed out that inclusion of the “sol-
vent correction” term into the DLVO theory, where
the electrical contribution to the free energy arose
solely from the ions in solution, resulted in the
conclusion that all electrical interactions would be
eliminated! Overbeek likewise recognized that the
small ions did not contribute to the electrical free
energy if the solvent contribution was included:28

This remarkable result shows that the solvent and
the small ions together just give a zero contribution
to Gel (and incidently also to Fel).

This conclusion is manifested in eq 12, which is the
Gibbs-Duhem result for a system in which the mac-
roions are partitioned from the rest of the solution.
One must conclude that if the SI theory is incorrect
because of eq 12, then the supporters of the Overbeek

resolution to the minimum in the SI Gibbs free energy
must also acknowledge that the DLVO theory is also
incorrect since inclusion of the solvent term in that
derivation likewise eliminates the sole contribution to
the electrical free energy, as shown by eq 12. There
is no philosophical basis for the selective application
of the “Overbeek correction term”: If it is to be applied
to one theory, it must be applied to all theories.
The resolution to this dilemma is to be found in the

inappropriate use of the Gibbs free energy for systems
of finite concentrations. In other words, there is a
“correction” to the “Overbeek correction” which, when
applied, clearly points out the error of selectively
isolating the macroions from the rest of the system,
and also the physical limitations in the application of
eq 11.
It cannot be denied that the macroions and the

electrolyte ions as well as the solvent molecules occupy
space and therefore contribute to the total measured
volume. Since concentrations are measured on the
basis of the total volume of the system, the screening
parameter must be written as

where “m” denotes all of the macroions in the total
volume of the solution or suspension, the summation
is over all of the electrolyte ions present (counterions
and added electrolyte), and vjn is the volume (in cm3)
of the nth particle type. It is now easily shown that
use of the appropriate expressions in eq 11 for the
chemical potential and substitution into eq 12 gives
the result

where φj is the volume fraction of the jth ionic species.
It is emphasized that eq 14 does not require the
macroion to be included in the Gibbs-Duhem expres-
sion. Thus the “Overbeek correction” is strictly valid
in the limit of infinite dilution.
We now include the macroionic species in the

integrated form of the Gibbs-Duhem expression, viz.,

Quite clearly the sum in eq 15 is rigorously 0 when
the macroions are included. This result verifies what
Ise and co-workers31 meant when they criticized
Overbeek28 for omitting the macroion contribution in
his use of the Gibbs-Duhem expression. It is noted
that eq 15 indicates that it is the free volume of the
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solution or suspension that must be used in calculation
of the Gibbs free energy. It is thus for this reason that
the macroions must be included in the calculation of
the total Gibbs free energy, even if the macroions are
fixed in position.
What Overbeek had “proven” is not that the inclu-

sion of the solvent eliminates electrical interactions
but rather that it verifies the power of the Gibbs-
Duhem expression. The Gibbs-Duhem expression is
a statement that the chemical potential changes of all
of the species in solution are not independent. Solving
for the change in the chemical potential of the solvent,
the integrated form of the Gibbs-Duhem expression
is

This expression gives the electrical response of the
solvent to the presence of electrically charged solute
particles. The general conclusion given by eq 16 is
that the solvent contribution to the Gibbs free energy
is given by eq 12 regardless of the electrical model.
What may be in question for the various models is

the definition of the screening parameter. In addition
to the two forms given by eqs 2 and 7 is the one that
follows from the coupled mode theories,7,11

Certainly the definition of the screening parameter
has a profound effect on the solvent contribution to
the free energy as given by eq 17.
It is emphasized that eqs 13-16 do not include a

contribution of the macroions to the ionic strength
except in the role of a particle of finite size to the
volume of the solution or suspension. Since a direct
contribution of the macroions to the ionic strength as
in eq 17 is a result of mobile macroions, the conclu-
sions drawn from eqs 13-16 are valid for “fixed”
macroions as proposed by Overbeek.28
The origin of this “attraction” between the two

macroparticles of like charge in the SI model is the
presence of excess counterions between the two mac-
roions. An analogy is made with the quantum me-
chanical description of bonding:27

Therefore, at this stage, we should reinterpret Umn
G

as the adiabatic pair potential describing the effective
interaction between the mth and nth macroions in
solution just like the energy eigenvalue of the Schrö-
dinger equation for electronic state in molecule being
interpreted as the adiabatic potential between con-
stituent ions.

It is of interest to note that in the model of Ray and
Manning32 (hereafter referred to as the RMmodel) the
quantum mechanical analogy is also used in their

description of an attractive component to the Gibbs
free energy for parallel rods:

Instead, we find a quantum mechanical analogy in
the covalent bond. In their minimum free energy
configuration the two lines of charge sites are sur-
rounded by condensed counterions that are delocal-
ized and belong to both, like the valence electrons in
a covalent bond between two atoms.

In our own studies we have likewise used the idea of
“sharing” of electrolyte ions between severalmacroions
as an explanation of the slow mode seen in the Dapp
data,33,34 where the attraction between the macroions
is described as being due to the following:34

...fluctuations in the distribution of small ions shared
by several polyions would have a tendency to retard
the dissolution of “temporal aggregates.”

The picture that emerges from these verbal descrip-
tions is that an “attraction” between macroions of like
charge results if electrolyte ions somehow “accumulate
and are confined” in a volume of solution that likewise
encompasses both macroions. This does not mean,
however, that the mathematical descriptions underly-
ing these visualizations are identical. For example,
although both the SI and RM models describe the
interaction between the macroions in quantum me-
chanical terms, Manning35 is the first to point out that
the RM model is not equivalent to the SI model.
A question of a very fundamental nature raised in

the SI theory is whether the Helmholtz free energy
or the Gibbs free energy should be used in the
description of the system. Quite clearly the total
volume of the system remains approximately constant
during the charging process. However, one must
consider the available volume for the thermodynami-
cally free ions. We use the definition of Oosawa, Imai,
and Kagawa38 for the “free volume” as being the total
volume minus that occupied by the polyion, the latter
being in the present context the macroion and its
associated ion cloud or “condensation” volume. That
the volume available for the “free” ions changes with
ionic strength is part of the Manning condensation
model for rods.36 In the Manning model, counterions
“condense” in a volume Vc about the rodlike polyion
until a certain fraction of charge is neutralized as
determined by the linear charge density. Computer
simulations by Le Bret and Zimm37 indicate that the
value of Vc increases as the ionic strength is lowered;
hence the corresponding free volume must likewise
decrease even though the total volume remains con-
stant. The RM model for interacting parallel rods
further suggests that the “condensation” volume is
dynamic in nature as it changes with interparticle
distance:32

When the polyions are moved into the range of
intermediate distances, the condensation volume
increases dramatically on further approach, the
translational entropy of the condensed counterions
increases, and approach of the polyions is a sponta-
neous process. The polyions attract each other.

In other words, as the parallel rods approach each
other additional counterions from the bulk solution are
transferred to the condensation volume with a con-
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comitant increase in the magnitude of the condensa-
tion volume. Since these “condensed” counterions are
thermodynamically isolated from those in the solution,
it necessarily follows that the “free volume” available
for the “thermodynamically free” counterions must
decrease as the ionic strength is lowered. The changes
in volume may have a dynamic component, as one may
conclude from the calculations of Sánchez-Sánchez and
Lozada-Cassou,39 who used a three-point extension of
the hypernetted chain (TPE/HNC) approximation to
the Ornstein-Zernike equation. In the TPE/HNC
calculations the spherical macroions are treated as one
component, a dumbbell at fixed separation distance,
and two counterions are then “moved” throughout all
of the allowed space. The TPE/HNCmethod therefore
includes counterion-counterion correlations. Their
computer simulations clearly show that the counterion
density about the two spheres increases with an
increase in charge density and/or a decrease in the
separation distance between the spheres. In the
extreme cases of high charge density and small
separations, the ion cloud may encompass both spheres
such that their identities are lost in the density maps.
There are other mechanisms of electrical origin that

give a long-range attractive component to the free
energy. Fluctuations in the net charge of the macroion
result in an attractive potential of the form given by
eq 1, where the square of the magnitude of the charge
fluctuations is substituted for the actual charge.40 In
view of the large differences in the finite sizes of the
macroion and supporting electrolyte ions, the “order-
ing” of the macroions may be entropy driven in a

manner similar to that for hard spheres of different
sizes.41,42 Consider the “void” and “cluster” regions
reported by Ise and co-workers.5 The entropy of the
coions that are repelled from the cluster region is
greater for the larger void regions. Smalley, Schärtl,
and Hashimoto43 propose a related model in which the
clusters are stabilized by the SI potential, and they
calculate the “excess” concentration of counterions in
the void region. They find that in the region 0.816 <
apκ < 3.05 there is a maximum in the fractionation of
the co-ions that could be as high as 10 times that in
the “cluster” region.
There are several experimental data that cannot be

interpreted in terms of the classical DLVO potential.3-14

The models discussed herein go beyond the DLVO
model in that they include fluctuation contributions
to the pairwise interaction between two macroions.
The nonuniform distribution of electrolyte ions may
therefore play an important role in the explanation
of “ordered clumps” of particles by providing an
attraction contribution to the free energy of these
complex systems. These models are somewhat lim-
ited, however, in that only pairwise interactions
between the macroions are considered. A complete
explanation of the “clumps” must require multiple-
body interactions. In the words of Richard Feynman,44

We are not trying to check all the time our conclu-
sions. After we checked them enough, they’re okay.
The thing that doesn’t fit is the thing that is most
interesting. The part that doesn’t go according to
what you expected.
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